Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Zool Res ; 45(3): 451-463, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38583936

RESUMO

The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.


Assuntos
Corvos , Animais , Camundongos , Enterococcus faecalis , Ecossistema , RNA Ribossômico 16S , Comportamento Alimentar , Aves
2.
Mol Ther Nucleic Acids ; 35(1): 102149, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38435118

RESUMO

Patients with pre-existing medical conditions are at a heightened risk of contracting severe acute respiratory syndrome (SARS), SARS-CoV-2, and influenza viruses, which can result in more severe disease progression and increased mortality rates. Nevertheless, the molecular mechanism behind this phenomenon remained largely unidentified. Here, we found that microRNA-19a/b (miR-19a/b), which is a constituent of the miR-17-92 cluster, exhibits reduced expression levels in patients with coronary heart disease in comparison to healthy individuals. The downregulation of miR-19a/b has been observed to facilitate the replication of influenza A virus (IAV). miR-19a/b can effectively inhibit IAV replication by targeting and reducing the expression of SOCS1, as observed in cell-based and coronary heart disease mouse models. This mechanism leads to the alleviation of the inhibitory effect of SOCS1 on the interferon (IFN)/JAK/STAT signaling pathway. The results indicate that the IAV employs a unique approach to inhibit the host's type I IFN-mediated antiviral immune responses by decreasing miR-19a/b. These findings provide additional insights into the underlying mechanisms of susceptibility to flu in patients with coronary heart disease. miR-19a/b can be considered as a preventative/therapy strategy for patients with coronary heart disease against influenza virus infection.

3.
Virology ; 593: 110031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401339

RESUMO

Enteromorpha polysaccharides (EPPs) have been reported to have antiviral and anti-inflammatory properties. To explore the effect of EPPs on H5N1-infected mice, mice were pretreated with EPPs before being infected with the H5N1 influenza virus intranasally. H5N1 infection resulted in body-weight loss, pulmonary and intestinal damage, and an imbalance of gut microbiota in mice. As a result of the inclusion of EPPs, the body weight of mice recovered and pathological damage to the lung and intestine was reduced. EPPs also diminished inflammation by drastically lowering the expression of proinflammatory cytokines in lungs and intestines. H5N1 infection reduced bacterial diversity, and the abundance of pathogenic bacteria such as Desulfovibrio increased. However, the beneficial bacteria Alistipes rebounded in the groups which received EPPs before the infection. The modulation of the gut-lung axis may be related to the mechanism of EPPs in antiviral and anti-inflammatory responses. EPPs have shown potential in protecting the host from the influenza A virus infection.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Virus da Influenza A Subtipo H5N1/metabolismo , Pulmão/patologia , Citocinas/genética , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Polissacarídeos/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Camundongos Endogâmicos BALB C
4.
Virol J ; 21(1): 33, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287375

RESUMO

BACKGROUND: Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS: To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS: In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS: In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Humanos , Vírus da Influenza A/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral , Proteínas Virais/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Fator Regulador 3 de Interferon/metabolismo
5.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2146-2155, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086023

RESUMO

In this paper, an optical color single-channel asymmetric cryptosystem based on the non-negative matrix factorization (NMF) and a face biometric in cyan-magenta-yellow-black (CMYK) space is proposed. To the best of our knowledge, this is the first time that NMF has been introduced into optical color image encryption. In the proposed cryptosystem, the color image in CMYK space is first decomposed into four color channels: C, M, Y, and K. By performing NMF operations on the four color channels, the four basic and sparse matrices can be obtained, respectively, which achieves asymmetry and saves computational resources. The four basis matrices can be used as private keys, and the four coefficient matrices are synthesized by the inverse discrete wavelet transform for subsequent encryption. Finally, the synthesized image is encoded with double random phase encoding based on phase truncation (PT). Compared with the existing PT-based cryptosystems, our cryptosystem can improve security against a special attack. In addition, the chaotic random phase mask is generated by a face biometric, which is noncontact and unique. Numerical simulation results are shown to verify the feasibility and robustness of our cryptosystem. Further, the proposed cryptosystem can be extended to encrypt multiple images conveniently.

6.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1969-1978, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855553

RESUMO

The wrapped phase patterns of objects with varying materials exhibit uneven gray values. Phase unwrapping is a tricky problem from a single wrapped phase pattern in electronic speckle pattern interferometry (ESPI) due to the gray unevenness and noise. In this paper, we propose a convolutional neural network (CNN) model named UN-PUNet for phase unwrapping from a single wrapped phase pattern with uneven grayscale and noise. UN-PUNet leverages the benefits of a dual-branch encoder structure, a multi-scale feature fusion structure, a convolutional block attention module, and skip connections. Additionally, we have created an abundant dataset for phase unwrapping with varying degrees of unevenness, fringe density, and noise levels. We also propose a mixed loss function MS_SSIM + L2. Employing the proposed dataset and loss function, we can successfully train the UN-PUNet, ultimately realizing effective and robust phase unwrapping from a single uneven and noisy wrapped phase pattern. We evaluate the performance of our method on both simulated and experimental ESPI wrapped phase patterns, comparing it with DLPU, VUR-Net, and PU-M-Net. The unwrapping performance is assessed quantitatively and qualitatively. Furthermore, we conduct ablation experiments to evaluate the impact of different loss functions and the attention module utilized in our method. The results demonstrate that our proposed method outperforms the compared methods, eliminating the need for pre-processing, post-processing procedures, and parameter fine-tuning. Moreover, our method effectively solves the phase unwrapping problem while preserving the structure and shape, eliminating speckle noise, and addressing uneven grayscale.

7.
Metabolites ; 13(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623901

RESUMO

Luria-Bertani broth (LB) culture medium is a commonly used bacterial culture medium in the laboratory. The nutrient composition, concentration, and culture conditions of LB medium can influence the growth of microbial strains. The purpose of this article is to demonstrate the impact of LB liquid culture medium on microbial growth under different sterilization conditions. In this study, LB medium with four different treatments was used, as follows: A, LB medium without treatments; B, LB medium with filtration; C, LB medium with autoclaving; and D, LB medium with autoclaving and cultured for 12 h. Subsequently, the protein levels and antioxidant capacity of the medium with different treatments were measured, and the effects of the different LB medium treatments on the growth of microorganisms and metabolites were determined via 16s rRNA gene sequencing and metabolomics analysis, respectively. Firmicutes and Lactobacillus were the dominant microorganisms, which were enriched in fermentation and chemoheterotrophy. The protein levels and antioxidant capacity of the LB medium with different treatments were different, and with the increasing concentration of medium, the protein levels were gradually increased, while the antioxidant capacity was decreased firstly and then increased. The growth trend of Bacillus subtilis, Bacillus paralicheniformis, Micrococcus luteus, and Alternaria alternata in the medium with different treatments was similar. Additionally, 220 and 114 differential metabolites were found between B and C medium, and between C and D medium, which were significantly enriched in the "Hedgehog signaling pathway", "biosynthesis of plant secondary metabolites", "ABC transporters", "arginine and proline metabolism", and "linoleic acid metabolism". LB medium may be a good energy source for Lactobacillus growth with unsterilized medium, and LB medium filtered with a 0.22 µm filter membrane may be used for bacterial culture better than culture medium after high-pressure sterilization. LB medium still has the ability for antioxidation and to keep bacteria growth whether or not autoclaved, indicating that there are some substances that can resist a high temperature and pressure and still maintain their functions.

8.
Pathogens ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623968

RESUMO

Trichomonas gallinae (T. gallinae) is an infectious parasite that is prevalent worldwide in poultry and can cause death in both poultry and wild birds. Although studies have shown that T. gallinae damages host cells through direct contact, the mechanism is still unclear. In this study, we found that T. gallinae can kill host cells by ingesting fragments of the host cells, that is, by trogocytosis. Moreover, we found that the PI3K inhibitor wortmannin and the cysteine protease inhibitor E-64D prevented T. gallinae from destroying host cells. To the best of our knowledge, our study has demonstrated for the first time that T. gallinae uses trogocytosis to kill host cells. Understanding this mechanism is crucial for the prevention and control of avian trichomoniasis and will contribute to the development of vaccines and drugs for the prevention and control of avian trichomoniasis.

9.
Nutrients ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571299

RESUMO

The impact of lactoferrin, an antimicrobial peptide (AMP) with iron-binding properties, on the intestinal barrier and microflora of mice infected with highly pathogenic avian influenza A (H5N1) virus remains unclear. To investigate the effects of lactoferrin on the histopathology and intestinal microecological environment, we conducted a study using H5N1-infected mice. H5N1 infection resulted in pulmonary and intestinal damage, as well as an imbalance in gut microbiota, significantly increasing the abundance of pathogenic bacteria such as Helicobacter pylori and Campylobacter. The consumption of lactoferrin in the diet alleviated lung injury and restored the downregulation of the INAVA gene and intestinal dysfunction caused by H5N1 infection. Lactoferrin not only reduced lung and intestinal injury, but also alleviated inflammation and reversed the changes in intestinal microflora composition while increasing the abundance of beneficial bacteria. Moreover, lactoferrin rebalanced the gut microbiota and partially restored intestinal homeostasis. This study demonstrated that lactoferrin exerts its effects on the intestinal tract, leading to improvements in gut microbiota and restoration of the integrity of both the intestinal wall and lung tissue. These findings support the notion that lactoferrin may be a promising candidate for systemic treatment of influenza by locally acting on the intestine and microbiota.


Assuntos
Microbioma Gastrointestinal , Virus da Influenza A Subtipo H5N1 , Enteropatias , Animais , Camundongos , Lactoferrina/farmacologia , Virus da Influenza A Subtipo H5N1/fisiologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Intestinos/microbiologia , Bactérias/genética , Enteropatias/patologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37562241

RESUMO

Trichomonas gallinae is a protozoan parasite that is the causative agent of trichomoniasis, and infects captive and wild bird species throughout the world. Although metronidazole has been the drug of choice against trichomoniasis for decades, most Trichomonas gallinae strains have developed resistance. Therefore, drugs with new modes of action or targets are urgently needed. Here, we report the development and application of a cell-based CCK-8 method for the high-throughput screening and identification of new inhibitors of Trichomonas gallinae as a beginning point for the development of new treatments for trichomoniasis. We performed the high-throughput screening of 173 anti-parasitic compounds, and found 16 compounds that were potentially effective against Trichomonas gallinae. By measuring the median inhibitory concentration (IC50) and median cytotoxic concentration (CC50), we identified 3 potentially safe and effective compounds against Trichomonas gallinae: anisomycin, fumagillin, and MG132. In conclusion, this research successfully established a high-throughput screening method for compounds and identified 3 new safe and effective compounds against Trichomonas gallinae, providing a new treatment scheme for trichomoniasis.


Assuntos
Doenças das Aves , Tricomoníase , Trichomonas , Animais , Ensaios de Triagem em Larga Escala , Doenças das Aves/tratamento farmacológico , Doenças das Aves/parasitologia , Tricomoníase/tratamento farmacológico , Tricomoníase/veterinária , Tricomoníase/parasitologia , Metronidazol/uso terapêutico
11.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513278

RESUMO

The pollution of industrial wastewater has become a global issue in terms of economic development and ecological protection. Pseudomonas oleovorans has been studied as a bacterium involved in the treatment of petroleum pollutants. Our study aimed to investigate the physicochemical properties and drug resistance of Pseudomonas oleovorans isolated from industrial wastewater with a high concentration of sulfate compounds. Firstly, Pseudomonas oleovorans was isolated and then identified using matrix-assisted flight mass spectrometry and 16S rDNA sequencing. Then, biochemical and antibiotic resistance analyses were performed on the Pseudomonas oleovorans, and a microbial high-throughput growth detector was used to assess the growth of the strain. Finally, PCR and proteomics analyses were conducted to determine drug-resistance-related genes/proteins. Based on the results of the spectrum diagram and sequencing, the isolated bacteria were identified as Pseudomonas oleovorans and were positive to reactions of ADH, MTE, CIT, MLT, ONPG, and ACE. Pseudomonas oleovorans was sensitive to most of the tested antibiotics, and its resistance to SXT and CHL and MIN and TIM was intermediate. The growth experiment showed that Pseudomonas oleovorans had a good growth rate in nutrient broth. Additionally, gyrB was the resistance gene, and mdtA2, mdtA3, mdtB2, mdaB, and emrK1 were the proteins that were closely associated with the drug resistance of Pseudomonas oleovorans. Our results show the biochemical properties of Pseudomonas oleovorans from industrial wastewater with a high concentration of sulfate compounds and provide a new perspective for Pseudomonas oleovorans to participate in biological removal of chemical pollutants in industrial wastewater.


Assuntos
Poluentes Ambientais , Pseudomonas oleovorans , Pseudomonas oleovorans/genética , Pseudomonas/metabolismo , Águas Residuárias , DNA Ribossômico/metabolismo , Poluentes Ambientais/metabolismo
12.
Integr Zool ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403417

RESUMO

Toll-like receptors (TLRs), the key sensor molecules in vertebrates, trigger the innate immunity and prime the adaptive immune system. The TLR family of rodents, the largest order of mammals, typically contains 13 TLR genes. However, a clear picture of the evolution of the rodent TLR family has not yet emerged and the TLR evolutionary patterns are unclear in rodent clades. Here, we analyzed the natural variation and the evolutionary processes acting on the TLR family in rodents at both the interspecific and population levels. Our results showed that rodent TLRs were dominated by purifying selection, but a series of positively selected sites (PSSs) primarily located in the ligand-binding domain was also identified. The numbers of PSSs differed among TLRs, and nonviral-sensing TLRs had more PSSs than those in viral-sensing TLRs. Gene-conversion events were found between TLR1 and TLR6 in most rodent species. Population genetic analyses showed that TLR2, TLR8, and TLR12 were under positive selection in Rattus norvegicus and R. tanezumi, whereas positive selection also acted on TLR5 and TLR9 in the former species, as well as TLR1 and TLR7 in the latter species. Moreover, we found that the proportion of polymorphisms with potentially functional change was much lower in viral-sensing TLRs than in nonviral-sensing TLRs in both of these rat species. Our findings revealed the first thorough insight into the evolution of the rodent TLR genetic variability and provided important novel insights into the evolutionary history of TLRs over long and short timescales.

13.
Virus Genes ; 59(4): 604-612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266848

RESUMO

H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Camundongos , Humanos , Patos , Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Animais Selvagens , Galinhas , Vírus Reordenados/genética
14.
Integr Zool ; 18(6): 963-980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37202360

RESUMO

Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.


Assuntos
Animais Selvagens , Ecossistema , Humanos , Animais , Biodiversidade , Extinção Biológica , Surtos de Doenças
15.
Animals (Basel) ; 13(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37106853

RESUMO

The abundance and prevalence of parasitic infection often vary in different host sexes, and this phenomenon has been named sex-biased parasitism. Brandt's voles are the dominant rodent species in typical steppe habitat and are widely distributed in Inner Mongolia, China, but the prevalence of parasites in Brandt's voles are poorly reported. In this study, we investigated the prevalence of six intestinal parasites in Brandt's voles in May, June, July, and August 2022 around the Xilingol Grassland in Inner Mongolia, China. The results showed that Syphacia obvelata, Aspiculuris tetraptera, and Trichostrongylidae family were the dominant intestinal parasites in Brandt's voles that we captured in this study, and the infection rates of the three parasites were significantly higher in males than females, which showed obvious male-biased parasitism. Season and human activities such as grazing had no significant effect on the infection rates for different parasites, while the parasite reproduction level was higher when the ambient temperature was around 18 °C. Sexual size dimorphism was ubiquitous in Brandt's voles, and it was mainly manifested by the differences in body weight and length between males and females. Simple linear regression analysis showed a significant positive correlation between bodyweight and parasite infection rates, so the sex-biased parasitism in Brandt's voles could be explained by the body size hypothesis, as a larger body could provide more ecological niches for parasitic infection.

16.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982803

RESUMO

Female mice can discriminate the urinary odors of male mice due to their olfactory acuity. Parasitic infection or subclinical infection can decrease the odor attractiveness of male mice and finally lead to aversion or avoidance responses in odor selection for female mice. Trichinella spiralis is a kind of tissue-parasitizing nematode that causes trichinellosis, a zoonotic parasitic disease that spreads throughout the world. However, the reproductive injury caused by Trichinella spiralis infection was not fully revealed. In this study, we explored the effect of Trichinella spiralis infection on the reproductive capacity in ICR/CD-1 male mice. We identified eight volatile compounds in urine by GC-MS analysis, and the results indicated that the contents of dimethyl sulfone, Z-7-tetradecen-1-ol, 6-Hydroxy-6-methyl-3-heptanone and (S)-2-sec-butyl-4,5-dihydrothiazole were significantly downregulated after parasitic infection, which might lead to the reduction of attractiveness of male mice urine to females. On the other hand, parasitic infection decreased sperm quality and downregulated the expression levels of Herc4, Ipo11, and Mrto4, and these genes were strongly related to spermatogenesis. In summary, this study revealed that the reproductive injury caused by Trichinella spiralis infection in ICR/CD-1 male mice could be associated with a decrease in urine pheromone content and sperm quality.


Assuntos
Trichinella spiralis , Triquinelose , Masculino , Feminino , Camundongos , Animais , Trichinella spiralis/genética , Camundongos Endogâmicos ICR , Feromônios , Sêmen , Triquinelose/parasitologia , Zoonoses , Espermatozoides
17.
Front Microbiol ; 14: 1136845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910168

RESUMO

Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.

18.
Animals (Basel) ; 13(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830543

RESUMO

The olfactory acuity of female mice allows them to discriminate the urinary odors of males. Parasitic infection can reduce the odor attractiveness of male mice to females and result in female aversion or avoidance responses in odor selection. However, the chemical signaling changes in the pheromone contents produced by the foreskin gland were not fully revealed after parasitic infection. Cryptosporidium parvum (C. parvum) is a common zoonotic intestinal parasite and has a wide range of hosts, including human, domestic animals, and wild animals. In this study, we immunosuppressed ICR/CD-1 male mice by dexamethasone sodium phosphate treatment. After C. parvum infection, physiological indexes such as body weight and organ weight were significantly decreased. Furthermore, the gene expression level of MUP (major urinary protein) in liver and urine were significantly down-regulated, which could be the reason for the decrease in urine attractiveness to females. GC-MS was performed to analyze the changes in the pheromone produced by the preputial gland before and after parasitic infection, and the results indicated that the levels of different pheromones were significantly reduced after parasitic infection. In summary, this study reveals that C. parvum infection damages the secondary sexual characteristics of male ICR/CD-1 male mice and decreases the pheromone content produced by the foreskin gland.

19.
Viruses ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851597

RESUMO

In October 2021, a wild bird-origin H3N8 influenza virus-A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8)-was isolated from Chinese pond heron in China. Phylogenetic and molecular analyses were performed to characterize the genetic origin of the H3N8 strain. Phylogenetic analysis revealed that eight gene segments of this avian influenza virus H3N8 belong to Eurasian lineages. HA gene clustered with avian influenza viruses is circulating in poultry in southern China. The NA gene possibly originated from wild ducks in South Korea and has the highest homology (99.3%) with A/Wild duck/South Korea/KNU2020-104/2020 (H3N8), while other internal genes have a complex and wide range of origins. The HA cleavage site is PEKQTR↓GLF with one basic amino acid, Q226 and T228 at HA preferentially bind to the alpha-2,3-linked sialic acid receptor, non-deletion of the stalk region in the NA gene and no mutations at E627K and D701N of the PB2 protein, indicating that isolate A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) was a typical avian influenza with low pathogenicity. However, there are some mutations that may increase pathogenicity and transmission in mammals, such as N30D, T215A of M1 protein, and P42S of NS1 protein. In animal studies, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) replicates inefficiently in the mouse lung and does not adapt well to the mammalian host. Overall, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) is a novel wild bird-origin H3N8 influenza virus reassortant from influenza viruses of poultry and wild birds. This wild bird-origin avian influenza virus is associated with wild birds along the East Asian-Australasian flyway. Therefore, surveillance of avian influenza viruses in wild birds should be strengthened to assess their mutation and pandemic risk in advance.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Camundongos , Aves/virologia , China/epidemiologia , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Influenza Aviária/virologia , Filogenia , Lagoas
20.
BMC Genomics ; 24(1): 54, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717784

RESUMO

BACKGROUND: Melophagus ovinus is considered to be of great veterinary health significance. However, little is known about the information on genetic mechanisms of the specific biological characteristics and novel methods for controlling M. ovinus. RESULTS: In total, the de novo genome assembly of M. ovinus was 188.421 Mb in size (330 scaffolds, N50 Length: 10.666 Mb), with a mean GC content of 27.74%. A total of 13,372 protein-coding genes were functionally annotated. Phylogenetic analysis indicated that the diversification of M. ovinus and Glossina fuscipes took place 72.76 Mya within the Late Cretaceous. Gene family expansion and contraction analysis revealed that M. ovinus has 65 rapidly-evolving families (26 expansion and 39 contractions) mainly involved DNA metabolic activity, transposases activity, odorant receptor 59a/67d-like, IMD domain-containing protein, and cuticle protein, etc. The universal and tightly conserved list of milk protein orthologues has been assembled from the genome of M. ovinus. Contractions and losses of sensory receptors and vision-associated Rhodopsin genes were significant in M. ovinus, which indicate that the M. ovinus has narrower ecological niches. CONCLUSIONS: We sequenced, assembled, and annotated the whole genome sequence of M. ovinus, and launches into the preliminary genetic mechanisms analysis of the adaptive evolution characteristics of M. ovinus. These resources will provide insights to understand the biological underpinnings of this parasite and the disease control strategies.


Assuntos
Dípteros , Doenças dos Ovinos , Moscas Tsé-Tsé , Animais , Ovinos , Filogenia , Ecossistema , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...